Skin antisepsis with chlorhexidine–alcohol versus povidone iodine–alcohol, with and without skin scrubbing, for prevention of intravascular-catheter-related infection (CLEAN): an open-label, multicentre, randomised, controlled, two-by-two factorial trial

Olivier Mimoz, Jean-Christophe Lucet, Thomas Kerforne, Julien Pascal, Bertrand Souweine, Véronique Goudet, Alain Mercat, Lila Bouadma, Sigismond Lasocki, Serge Alfantari, Arnaud Friggeri, Florent Wallet, Nicolas Allou, Stéphane Ruckly, Dorothée Balayn, Alain Lepape, Jean-François Timsit, for the CLEAN trial investigators

Summary

Background Intravascular-catheter-related infections are frequent life-threatening events in health care, but incidence can be decreased by improvements in the quality of care. Optimisation of skin antisepsis is essential to prevent short-term catheter-related infections. We hypothesised that chlorhexidine–alcohol would be more effective than povidone iodine–alcohol as a skin antiseptic to prevent intravascular-catheter-related infections.

Methods In this open-label, randomised controlled trial with a two-by-two factorial design, we enrolled consecutive adults (age ≥18 years) admitted to one of 11 French intensive-care units and requiring at least one of central-venous, haemodialysis, or arterial catheters. Before catheter insertion, we randomly assigned (1:1:1:1) patients via a secure web-based random-number generator (permuted blocks of eight, stratified by centre) to have all intravascular catheters prepared with 2% chlorhexidine–70% isopropyl alcohol (chlorhexidine–alcohol) or 5% povidone iodine–69% ethanol (povidone iodine–alcohol), with or without scrubbing of the skin with detergent before antiseptic application. Physicians and nurses were not masked to group assignment but microbiologists and outcome assessors were. The primary outcome was the incidence of catheter-related infections with chlorhexidine–alcohol versus povidone iodine–alcohol in the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01629550 and is closed to new participants.

Findings Between Oct 26, 2012, and Feb 12, 2014, 2546 patients were eligible to participate in the study. We randomly assigned 1181 patients (2547 catheters) to chlorhexidine–alcohol (594 patients with scrubbing, 587 without). Chlorhexidine–alcohol was associated with lower incidence of catheter-related infections (0·28 vs 1·77 per 1000 catheter-days with povidone iodine–alcohol; hazard ratio 0·28 vs 1·77 per 1000 catheter-days with povidone iodine–alcohol; hazard ratio 0·15, 95% CI 0·05–0·41; p=0·0002). Scrubbing was not associated with a significant difference in catheter colonisation (p=0·3877). No systemic adverse events were reported, but severe skin reactions occurred more frequently in those assigned to chlorhexidine–alcohol (27 [3%] patients vs seven [1%] with povidone iodine–alcohol; p=0·0017) and led to chlorhexidine discontinuation in two patients.

Interpretation For skin antisepsis, chlorhexidine–alcohol provides greater protection against short-term catheter-related infections than does povidone iodine–alcohol and should be included in all bundles for prevention of intravascular catheter-related infections.

Funding University Hospital of Poitiers, CareFusion.

Introduction

Catheter-related bloodstream infections are common infections in health care settings that are associated with high mortality. Skin at the insertion site and the catheter hub or connector are the main sources of pathogens for infection, with skin the main source when catheters are placed for a shorter duration of time and the hub or connector being the main source in longer timeframes. Therefore, optimum skin antisepsis is crucial during short-term catheter insertion and maintenance. Alcohol has the greatest immediate efficacy, with 70% isopropyl alcohol being microbiologically superior to 69% ethanol, but does not have persistency on skin. The action of chlorhexidine or povidone iodine is slower, less profound, and chlorhexidine has substantial persistency on skin. Use of chlorhexidine–alcohol at chlorhexidine concentrations higher than 0·5% has been advocated as the first-line solution for catheter insertion-site antisepsis in USA and English guidelines because it combines the immediate microbialic activity of alcohol and the persistent (residual) activity on skin of chlorhexidine. However, the authors of these recommendations point...
Research in context

Evidence before this study
In their 2011 guidelines for the prevention of intravascular catheter-related infections, the US Centers for Disease Control and Prevention stated that substances for skin preparation before catheter insertion were an unresolved issue. Although evidence was accumulating for the use of chlorhexidine for skin preparation before catheter insertion, the efficacy of chlorhexidine was not established, nor was the optimum concentration of chlorhexidine. The recommendations of US Centers for Disease Control and Prevention (CDC) do not provide advice on skin preparation before surgery. Patients assigned to receive the chlorhexidine–alcohol combination had fewer catheter-related infections and catheter-related bloodstream infections compared with those assigned to receive the povidone iodine–alcohol combination. Skin scrubbing before skin antisepsis did not reduce the incidence of catheter colonisation.

Implications of all the available evidence
Chlorhexidine–alcohol combination should now be the standard of skin preparation before catheter insertion. Scrubbing of the skin with detergent should not, however, be standardised.

Methods

Study design and participants
We did an open-label, multicentre, randomised, controlled, two-by-two factorial design study. The study protocol has been published previously.13 We recruited patients in 11 French intensive-care units in which all patients due to receive a central venous catheter, arterial catheter, or haemodialysis catheter were enrolled to receive skin preparation with 2% chlorhexidine–70% isopropyl alcohol or 5% povidone iodine–69% ethanol, both preceded or not by skin scrubbing, for antisepsis. Patients assigned to receive the chlorhexidine–alcohol combination had fewer catheter-related infections and catheter-related bloodstream infections compared with those assigned to receive the povidone iodine–alcohol combination. Skin scrubbing before skin antisepsis did not reduce the incidence of catheter colonisation.

Added value of this study
We did a multicentre randomised controlled trial in 11 intensive care units in which all patients due to receive a central venous catheter, arterial catheter, or haemodialysis catheter were enrolled to receive skin preparation with 2% chlorhexidine–70% isopropyl alcohol or 5% povidone iodine–69% ethanol, both preceded or not by skin scrubbing, for antisepsis. Patients assigned to receive the chlorhexidine–alcohol combination had fewer catheter-related infections and catheter-related bloodstream infections compared with those assigned to receive the povidone iodine–alcohol combination. Skin scrubbing before skin antisepsis did not reduce the incidence of catheter colonisation.

Randomisation and masking
A statistician not involved in either screening patients or assessing outcomes provided a computer-generator number list. Randomisation was done through a secure web-based randomisation system and stratified by centre. We randomly assigned (1:1:1:1) patients in permuted blocks of eight to one of the four treatment groups based on skin preparation procedures (chlorhexidine–alcohol or povidone iodine–alcohol, with administration preceded by skin scrubbing with an antiseptic detergent [two-step procedure] or administration with no scrubbing [one-step procedure]). Masking of the participants and staff in the intensive-care units was not feasible because the study antiseptics had different colours and formulations. However, microbiologists who tested the catheters and blood samples, the four outcome assessors, and the statisticians were all masked to group assignment.
Procedures

All study centres were required to follow French recommendations, similar to CDC recommendations, for catheter insertion and care. For each patient, all intra-vascular catheters needed for standard care were inserted and maintained in the same way with either 2% (weight/volume [w/v]) chlorhexidine and 70% (v/v) isopropyl alcohol (ChloraPrep, CareFusion, Voisins le Bretonneux, France) or 5% (w/v) povidone iodine and 69% (v/v) alcohol (ChloraPrep, CareFusion, Voisins le Bretonneux, France), with (two-step procedure) or without (one-step procedure) scrubbing with an antiseptic detergent (4% [w/v] chlorhexidine, Hibiscrub, Molnlycke Health Care, Wasquehal, France, or 4% [w/v] povidone iodine, Betadine Scrub, MEDA Pharma, respectively). The same assigned antiseptic procedure was used at each dressing change.

In the one-step procedure, the physician who inserted the catheter disinfected the skin using maximal barrier precautions. The antiseptic was applied by moving back and forth (chlorhexidine–alcohol) or by circular movements (povidone iodine–alcohol) for at least 30 s, starting at the catheter insertion site and then extending to the entire work area. Large sterile drapes were applied once the work area was dry. The catheter was then inserted without any further application of antiseptic. In the two-step procedure, the work area was scrubbed by a nurse using sterile gauze soaked with antiseptic detergent and applied by circular movements for at least 15 s, rinsed with sterile water, and dried with sterile gauze. Study antiseptic was then applied, followed by large sterile drapes, and the physician inserted the catheter using maximal barrier precautions as described for the one-step procedure.

After insertion, the catheters were dressed with semi-permeable transparent dressing. In each unit, the same catheter and dressing types were used throughout the study. Catheter insertion sites were inspected daily for signs of infection by attending nurses not masked to the group assignment independently reviewed the case-report form and classified the catheter infection status according to the accepted definitions.13,15 Disagreements between the two assessors were resolved by consensus conference among the four outcome assessors.

We defined catheter colonisation as a quantitative catheter-tip culture eluate in broth showing at least one microorganism in a concentration of at least 1000 CFU per mL. We defined catheter-related sepsis without bacteraemia as a combination of: fever (body temperature ≥38.5°C) or hypothermia (≤36.5°C), catheter colonisation; resolution of fever or hypothermia within 48 h after catheter removal and without any change in antimicrobial therapy, or with presence of pus at the catheter insertion site; and no other source of infection identified. We defined catheter-related bloodstream infection (CR-BSI) as a combination of: fever (body temperature ≥38.5°C) or hypothermia (body temperature ≤36.5°C), one or more positive peripheral blood cultures drawn 48 h before or after catheter withdrawal; isolation of the same organism (same species and same susceptibility pattern) from the colonised catheter or from the catheter insertion site, or a blood culture differential time-to-positivity of 2 h or more; and no apparent source of bacteraemia other than the catheter. In patients with bacteraemia due to
coagulase-negative staphylococci, at least two positive cultures from separate blood samples were required. Catheter-related infections were either catheter-related sepsis without bacteraemia or CR-BSI.

Non-cultured catheters were classified as associated with catheter-related sepsis or CR-BSI in case of sepsis with or without bacteraemia and no detectable source other than the catheter, colonised in cases of a blood culture test from the catheter hub positive for bacteria other than coagulase-negative staphylococci and no other detectable source of bacteraemia, and sterile otherwise.

Outcomes

The primary outcome was the incidence of catheter-related infections in patients assigned to chlorhexidine–alcohol versus incision in those assigned to povidone iodine–alcohol as the skin antiseptic. The main secondary outcome was the incidence of catheter colonisation with the two-step versus the one-step procedure. Catheter colonisation, a precursor to catheter-related infection, was used for the scrubbing outcome because it is a more sensitive criterion that is likely to detect smaller differences between treatment groups. Additional prespecified outcomes were CR-BSI, skin insertion-site colonisation at catheter removal, mortality during stay in the intensive-care unit, length of intensive-care unit stay, and safety outcomes including skin status at each dressing change and at catheter removal, assessed using the International Contact Dermatitis Research Group scale, between groups (chlorhexidine–alcohol vs povidone iodine–alcohol or two-step vs the one-step procedure). Cost for skin disinfection procedures and cost of catheter-related infections were estimated in 2014€ according to French guidance for cost and economic evaluations.

Statistical analysis

Based on the findings of two previous studies showing a 52–59% reduction in the risk of CR-BSI with use of chlorhexidine–alcohol instead of povidone iodine–alcohol, we hypothesised that use of chlorhexidine–alcohol would decrease the incidence of catheter-related infection by 50% compared with povidone iodine–alcohol. We assumed a 5% incidence of catheter-related infections with povidone iodine–alcohol. On the basis of data from previous studies, we hypothesised that each patient would have at least two catheters inserted. We used an intraclass correlation within patients of 0·02, a two-sided α risk of 5%, and power of 80% to compute sample size. With our hypotheses, 2256 evaluable patients (more than 4512 catheters) were needed to take into account the interaction between antiseptic efficacy and skin scrubbing.
Data were analysed on an intention-to-treat basis. No interim analysis was planned. Demographic data were described as number and percentage or median and IQR and compared with the χ² test or Mann-Whitney test, as appropriate. We assessed antiseptic efficacy (catheter colonisation, catheter-related infection, and CR-BSI) with a marginal Cox model stratified by centre and adjusted for covariates that were significantly imbalanced between groups. This model took into account the censored nature of the data and the intracluster (within-patient) dependency (more than one catheter per patient), using a robust sandwich covariance matrix.19 A potential interaction between scrubbing and antiseptic application was first sought by forcing the interaction term into the final model. In the case of absence of significant interaction, interaction terms were not included in the reported results but results were systematically adjusted on the other intervention (ie, scrubbing or not for comparison between antiseptic agents; chlorhexidine–alcohol use or not for comparison between one-step and two-step procedures). We calculated hazard ratios (HR) and 95% CIs, as well as incidence density and Kaplan-Meier estimates. We compared the number of CFUs recovered from skin cultures between groups with the Mann-Whitney test. Tests were two-tailed and unadjusted for multiple comparisons. Analyses were done with SAS version 9.4 and R software. This study is registered with ClinicalTrials.gov, number NCT01629550 and is closed to new participants.

Role of the funding source
The University Hospital of Poitiers, France, sponsored the study. CareFusion, the manufacturer of the 2% chlorhexidine–alcohol antiseptic solution used in this study, provided an unrestricted grant. Neither the sponsor nor CareFusion had a role in the trial initiation, study design, choice of antiseptic products, data collection, data analysis, data interpretation, writing of the report, or the decision to submit. The corresponding author had full access to all of the data in the study and had final responsibility for the decision to submit for publication.

Results
Between Oct 26, 2012, and Feb 12, 2014, 2546 patients were eligible to participate in the study; we enrolled 2349 (figure 1). 1181 patients (2547 catheters) were randomly allocated to chlorhexidine–alcohol (594 patients with scrubbing, 587 without) and 1168 (2612 catheters) to povidone iodine–alcohol (580 patients with scrubbing, 588 without; tables 1 and 2).
We cultured or did culturing to determine the differential time to positivity before catheter removal for 4442 (86%) of the 5159 catheters. We reviewed masked case report forms of patients with a positive catheter-tip culture (n=815), a positive blood culture sampled 48 h before or after catheter removal (n=281), or a non-cultured catheter (n=717) to classify the catheter infection status. Of these, 56 were considered debatable and submitted to the four assessors. The assessors were in complete agreement for 31 catheters and reached a consensus after discussion for the remaining 25 catheters (catheter-related infection in two cases, CR-BSI in one case, and no infection in 22 cases).

There was no significant interaction between the two study interventions (one-step vs two-step scrubbing procedure and antiseptic agent) and incidence of catheter colonisation (p=0.8887), catheter-related infection (p=0.1740), and CR-BSI (p=0.1645). I.e, the results for comparison between the two antiseptics were not affected by the type of procedure (one-step vs two-step) and the results for comparison between one-step and two-step procedures were also not affected by the type of antiseptic chosen. We therefore analysed both study interventions by fitting separate models.

Incidence of catheter-related infection in patients assigned to chlorhexidine–alcohol was 0.28 per 1000 catheter-days (six infections) compared with

<table>
<thead>
<tr>
<th>Entire population (n=5159)</th>
<th>Antiseptic groups</th>
<th>One-step or two-step groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chlorhexidine–alcohol group (n=2547)</td>
<td>Povidone iodine–alcohol group (n=2612)</td>
</tr>
<tr>
<td>Time in place (days)</td>
<td>6 (3–11)</td>
<td>6 (3–11)</td>
</tr>
<tr>
<td>Experience of the operator</td>
<td></td>
<td></td>
</tr>
<tr>
<td><50 procedures</td>
<td>2656 (71%)</td>
<td>1286 (70%)</td>
</tr>
<tr>
<td>≥50 procedures</td>
<td>1503 (29%)</td>
<td>761 (30%)</td>
</tr>
<tr>
<td>Arterial catheter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venous catheter</td>
<td>2155 (42%)</td>
<td>1052 (41%)</td>
</tr>
<tr>
<td>Femoral</td>
<td>775/2446 (32%)</td>
<td>383/1189 (32%)</td>
</tr>
<tr>
<td>Radial</td>
<td>1671/2446 (68%)</td>
<td>806/1189 (68%)</td>
</tr>
<tr>
<td>Venous catheter</td>
<td>2155 (42%)</td>
<td>1052 (41%)</td>
</tr>
<tr>
<td>Jugular</td>
<td>843/2355 (39%)</td>
<td>414/1052 (39%)</td>
</tr>
<tr>
<td>Subclavian</td>
<td>739/2355 (34%)</td>
<td>354/1052 (34%)</td>
</tr>
<tr>
<td>Femoral</td>
<td>573/2355 (27%)</td>
<td>284/1052 (27%)</td>
</tr>
<tr>
<td>Haemodialysis catheter</td>
<td>558 (11%)</td>
<td>306 (12%)</td>
</tr>
<tr>
<td>Jugular</td>
<td>244/558 (44%)</td>
<td>136/306 (44%)</td>
</tr>
<tr>
<td>Subclavian</td>
<td>12/558 (2%)</td>
<td>7/306 (2%)</td>
</tr>
<tr>
<td>Femoral</td>
<td>302/558 (54%)</td>
<td>163/306 (53%)</td>
</tr>
</tbody>
</table>

Table 2: Characteristics of the catheters
1.77 per 1000 catheter-days (39 infections) in those assigned to povidone iodine–alcohol (HR 0.15, 95% CI 0.05–0.41; p=0.0002; figure 2). The chlorhexidine–alcohol group had significantly fewer CR-BSIs (0.28 vs 1.32 per 1000 catheter-days; 0.21, 0.07–0.59; p=0.003) and fewer colonised catheters (3.34 vs 18.74 per 1000 catheter-days; 0.18, 0.13–0.24; p<0.0001), with similar effects on Gram-negative and Gram-positive organisms (appendix). The effects were not significantly affected by admission category, baseline Simplified Acute Physiology Score (SAPS) II, type of catheter, catheter insertion site (appendix) or when only cultured catheter cases were included in the analysis (appendix). However, for central venous catheters, the higher efficacy of chlorhexidine–alcohol compared with povidone iodine–alcohol skin preparation was significant only for colonisation and not for catheter-related infection and CR-BSI (appendix). Use of povidone iodine–alcohol instead of chlorhexidine–alcohol did not significantly affect length of stay or mortality for patients in intensive-care units (0.3 days [95% CI –0.4 to 0.7] and 0.4% [–3.3 to 4.1], respectively) or mortality for those in hospital (0.3% [–3.5 to 4.1]; table 1).

The incidences of catheter colonisation (11.56 and 10.75 per 1000 catheter-days, respectively; HR 1.10, 95% CI 0.89–1.32; p=0.05–0.41; HR=0.18 (95% CI 0.13–0.24); p=0.0002) did not significantly differ between patients given the one-step and the two-step procedure. Number of days in intensive-care and mortality also did not significantly differ between patients assigned to the one-step procedure and those assigned to skin scrubbing in the two-step procedure (increase in ICU stay of 0.6 days [95% CI –0.1 to 1.0], mortality in intensive care of 1.77 per 1000 catheter-days; 0.18, 0.13–0.24; p<0.0001). Bacterial growth was more common in catheters from patients assigned to chlorhexidine–alcohol (4 CFU [IQR 0–50] vs 41 CFU [1 to >100], respectively; p=0.0001). Median colony counts did not significantly differ for between catheters from patients assigned to the one-step and two-step procedures (14 CFU [0 to >100] vs 12 CFU [0 to >100], respectively; p=0.9112).

No systemic adverse reactions to chlorhexidine–alcohol or povidone iodine–alcohol occurred. Skin reactions were more frequent with chlorhexidine–alcohol than with povidone iodine–alcohol (p=0.0110; appendix). Severe skin reactions occurred in 27 (3%) patients.
assigned to chlorhexidine–alcohol and in seven (1%) assigned to povidone iodine–alcohol (p=0.0017; appendix). Two patients in the chlorhexidine group had their treatment discontinued for intolerance. The first was a very ill patient with acute graft-versus-host disease and fragile skin. The second patient developed superficial skin ulcerations under the dressing leading to the suspicion of allergy to chlorhexidine; allergy testing 4 months later ruled out this diagnosis. The exact cause remains unknown, but the patient was found to be highly allergic to nickel, a metal used to make some catheters. The incidence of skin reactions was not different between the one-step and two-step procedures (p=0.9554). No specific intervention apart from antiseptic discontinuation was needed to manage these complications. Skin lesions resolved after catheter removal.

We estimated use of chlorhexidine–alcohol instead of povidone iodine–alcohol prevented one catheter-related infection for each 78 (95% CI 25–311) catheters left in place for a mean of 8 days. Resources for both skin disinfection strategies were the same except for the cost of each antiseptic solution (chlorhexidine–alcohol €1.25 for each dressing [mean cost in study €2.90 per patient]; povidone iodine–alcohol: €1.5, one unit for 8 days) and cost of gauzes (€0.01 for each dressing) in the povidone iodine-alcohol group. Therefore, the cost of prevention of one episode of catheter-related infection with chlorhexidine–alcohol use was €227 (€74–€912). This extra cost compared favourably with the cost of one catheter-related infection measured previously by our group in similar patients with microcosting techniques in 2007 and corrected for inflation from 2007 to 2014 at €19 583. A cost analysis study will be done and published elsewhere.

Discussion

Use of 2% chlorhexidine–alcohol for skin antisepsis was associated with six-fold decreases in the incidences of catheter-related infection and catheter colonisation and a five-fold decrease in the incidence of CR-BSI, compared with 5% povidone iodine–alcohol. Skin scrubbing before antisepctic application was not associated with a further decrease in catheter colonisation. Adverse skin reactions were rare but more common with chlorhexidine–alcohol than with povidone iodine–alcohol.

Previous studies that compared chlorhexidine and povidone iodine for skin antisepsis during catheter insertion and maintenance used formulations with or without alcohol, and their results are therefore difficult to compare. Two single-centre studies compared a mixture of 0.25% chlorhexidine, 0.025% benzalkonium, and 4% benzyl alcohol to 5% povidone iodine–alcohol for insertion-site care of central venous catheters in patients in intensive-care units. Both studies reported significant decreases in catheter colonisation with the chlorhexidine-based formulation. However, both studies had several drawbacks, including their design, use of a mixture of three compounds in the chlorhexidine group, and insufficient statistical power to show a significant effect on catheter-related infections. All these drawbacks are major limitations to the general applicability of their findings. Our study confirms the superiority of chlorhexidine–alcohol compared with povidone iodine–alcohol and warrants recommendation of chlorhexidine–alcohol as the preferred antiseptic for intravascular catheter insertion and care. The superiority of alcoholic solutions compared with aqueous solutions has been shown elsewhere.

The superiority of chlorhexidine–alcohol over povidone iodine–alcohol was not affected by the type of admission (medical vs surgical), the patients’ severity, the type of catheter, or the insertion site, and it extended to both Gram-positive and Gram-negative microorganisms (appendix). However, with central venous catheters, the difference was significant only for colonisation and not for catheter-related infection and CR-BSI, which might be attributed to insufficient power for subgroup analysis in the study. Although both antiseptic solutions possess broad-spectrum antimicrobial activity, the better clinical protection provided by chlorhexidine–alcohol is probably linked to the long-term antimicrobial suppressive activity, which is mainly due to the power of chlorhexidine and the inactivation of povidone iodine by blood and other protein-rich biomaterials present on skin, even though the latter point was recently challenged. In keeping with these theories, our skin cultures from catheter insertion sites showed larger bacterial concentration decreases with chlorhexidine–alcohol than with povidone iodine–alcohol.

With neither of the two antiseptic solutions did previous scrubbing with an antiseptic detergent further decrease catheter colonisation, catheter-related infections, or CR-BSI. These findings are in agreement with studies done in surgery that indicate that skin antisepsis preceded skin scrubbing is not superior to skin antisepsis alone.

The findings showing benefit for chlorhexidine–alcohol in our study were obtained in intensive-care units with a low baseline incidence of catheter-related infection, as observed in the povidone iodine–alcohol group. This low baseline incidence occurred in a population of high-risk patients in intensive-care units, as shown by their high severity scores at admission, the large proportion of ventilated patients, and a high mortality rate. The low incidence of infections can be ascribed to the extensive use of recommended preventive measures, including maximal barrier precautions.

Adverse events with both antiseptic solutions were rare. Severe skin reactions occurred in 3% of patients assigned to chlorhexidine–alcohol, a proportion comparable with those reported with chlorhexidine dressings and chlorhexidine sponges in similar patients in the intensive-care unit. The proportion of patients with reactions was smaller in those assigned to povidone iodine–alcohol. Severe skin reactions require
early recognition followed by immediate cessation of the antiseptic at fault. No systemic reactions occurred in our study.

Our study has several limitations. First, masking was not feasible, because the two antiseptic solutions differed in colour and formulation. However, the microbiologists who did skin and catheter cultures were unaware of treatment allocation. Most importantly, all suspected cases of catheter-related infections were reviewed by masked independent assessors based on detailed pre-established definitions. Therefore, we do not believe that absence of masking of patients and clinicians has caused a bias in the assessment of main outcomes. Second, the possible effect of differences in the antiseptic types and concentrations (including the alcoholic component) in the study solutions or application methods could not be assessed. However, the antiseptics were used in their commercially available formulations and as recommended by their manufacturers. Further studies are necessary to determine the optimum concentration of chlorhexidine and type and concentration of alcohol to be combined with chlorhexidine. Third, adhesion to the study protocol was not regularly checked by formal audits. However, the health-care providers attended training sessions designed to homogenise skin preparation practices across units before start of the study and independent clinical research assistants were available at each participating hospital to monitor the conduct of the study. Fourth, potential additive value through outcomes. Second, the possible effect of differences in clinicians has caused a bias in the assessment of main outcomes. Second, the possible effect of differences in

Contributors
OM obtained funding. OM, J-CL, AL, and J-FT designed the study; recruited the participating sites; were responsible for the study execution, data collection, and data analysis; wrote the manuscript, and decided in consultation with the other authors to submit the paper for publication. OM, TK, JP, BS, VG, AM, LB, SL, SA, AF, FW, NA, and DB made substantial contributions to patient recruitment and data collection. SR and J-FT did the statistical analysis.

Declaration of interests
OM received research grants, lecture, and consultancy fees from CareFusion. JF-T received research grants from CareFusion. J-CL has received lecture fees from CareFusion. All other authors have no competing interests.

Acknowledgments
We thank all the physicians and nurses in the participating centres for the care they provided to the patients during the study, and the research associates for their help with data collection and study monitoring.

References

